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S. D. Guest1 and P. W. Fowler2

1Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge CB2 1PZ, UK
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UK

A symmetry-adapted version of the Maxwell rule
appropriate to periodic bar-and-joint frameworks is
obtained, and is further extended to body-and-joint
systems. The treatment deals with bodies and forces
that are replicated in every unit cell, and uses the
point group isomorphic to the factor group of the
space group of the framework. Explicit expressions
are found for the numbers and symmetries of
detectable mechanisms and states of self-stress in
terms of the numbers and symmetries of framework
components. This approach allows detection and
characterization of mechanisms and states of self-
stress in microscopic and macroscopic materials and
meta-materials. Illustrative examples are described.
The notion of local isostaticity of periodic frameworks
is extended to include point-group symmetry.

1. Introduction
Counting arguments give powerful conditions on
rigidity/mobility of finite structures, and we consider
here their applicability to extended periodic structures.
Many objects in the macroscopic and microscopic worlds
have been modelled as bar-and-joint frameworks, which
consist of stiff bars connected with flexible joints (pin
joints in two dimensions, spherical joints in three
dimensions). Counting arguments for these frameworks
were first formally expressed by Maxwell [1]. This rule,
in the extension described by Calladine [2], is

(two dimensions) m − s = 2j − b − 3

and (three dimensions) m − s = 3j − b − 6,

}
(1.1)

where m is the number of mechanisms, s the number
of states of self-stress, j the number of joints and b the
number of bars of the framework. In this formulation,
the constant terms on the RHS account for the rigid-body
motions of the unsupported framework.

2013 The Author(s) Published by the Royal Society. All rights reserved.
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Scalar counting rules of this kind are powerful but give limited information because they yield
only the difference between the numbers of mechanisms and states of self-stress. The information
content can be extended by considering the symmetries of the framework, and applying the
counting approach symmetry by symmetry. Such an approach can reveal the existence of
mechanisms and states of self-stress which are hidden by cancellation within the bare scalar
count. These extensions can be written compactly in terms of (typically reducible) representations
Γ (object) which collect the characters χobject(S) of sets of objects. For each symmetry operation
S, χobject(S) is the trace of the matrix that relates the set before and after application of S. For
frameworks, the key representations are Γ (b) and Γ (j), which describe the symmetries of bars
and joints, respectively.

The symmetry-extended version of (1.1) is, from [3],

Γ (m) − Γ (s) = Γ (j) × ΓT − Γ (b) − ΓT − ΓR, (1.2)

where ΓT and ΓR are representations of relevant rigid-body translations and rotations,
respectively. They are

(two dimensions) ΓT = Γ (Tx, Ty); ΓR = Γ (Rz)

and (three dimensions) ΓT = Γ (Tx, Ty, Tz); ΓR = Γ (Rx, Ry, Rz),

}
(1.3)

where the two-dimensional restriction is to the (x, y) plane. A similar development can be framed
for other models of structures: a finite body-and-joint framework also has a scalar counting rule
for net mobility [4,5], and a symmetry extension of this counting rule has been derived [6].

Scalar counting can also be extended to periodic structures defined by a representative unit
cell. This formulation, and its further extension to include symmetry, are the topics of this paper.
We show how the extended equations can be constructed for both pin-jointed and body-joint
frameworks and give some examples of their use. For pin-jointed periodic frameworks, Ross
et al. [7] and Malestein & Theran [8] have previously considered counting for systems that are
constrained to retain certain symmetries. Here, within a chosen periodicity, we effectively provide
counts for all possible symmetries.

2. Counting for periodic bar-and-joint structures
The basis of our approach is the consideration of the displacement and forces within the unit cell.
The complete infinite structure is considered by translations of this cell. It is assumed here that
the behaviour of the contents of the cell is also replicated by translation, i.e. we work in the k = 0
wavevector regime [9]. For these assumptions, Borcea & Streinu [10] give the extension of the
scalar Maxwell counting rule for periodic structures. Here, we give an alternative derivation that
provides a basis for the further extension to include symmetry as described in §3.

A key element of the extension of rules (1.1) and (1.2) to repetitive periodic frameworks is the
consideration of the appropriate rigid-body motions and deformations of the unit cell. Consider
initially the affine infinitesimal deformations of a unit cell, used in solid mechanics to provide a
basis for the strain tensor [11]. One basis for all possible deformations of the two-dimensional unit
cell (i.e. excluding rigid-body translations and rotations) is the set of the two orthogonal stretches
in x- and y-directions, and the single xy shear (figure 1). In three dimensions, a suitable basis for
the possible deformations of the unit cell is the set of three orthogonal stretches (in x-, y- and
z-directions) and three shears (xy, yz, zx).

In periodic systems, the freedoms of the joints comprise the freedoms of each joint within the
representative unit cell plus the deformations of the unit cell itself. Thus, the count of freedoms in
two dimensions is 2j + 3, and in three dimensions is 3j + 6. However, this freedom includes rigid-
body motions (two in two dimensions and three in three dimensions) that we wish to exclude
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Figure 1. The deformations of the unit cell that are compatible with periodic mobility in two dimensions, comprising (left to
right) two orthogonal stretches and one shear.

(a) (b)

(c) (d)

Figure 2. The kagome framework. (a) The choice of unit cell used here; (b) the unit cell with symmetry elements denoted by
the standard symbols of a rhombus for a C2 axis, triangle for a C3 axis, hexagon for a C6 axis, solid line for a reflection line, and
a dashed line for a glide line; (c) a motif with a minimal set of complete joints and bars; and (d) a deformed configuration,
illustrating the B2-symmetric mechanism detected by the analysis reported in §4a.

from the list of mechanisms. Hence, the periodic equivalent of (1.2) is

(two dimensions) m − s = 2j − b + 3 − 2 = 2j − b + 1

and (three dimensions) m − s = 3j − b + 6 − 3 = 3j − b + 3.

}
(2.1)

The RHS of (2.1) differs from the finite case (1.1) by addition of counts of four (two dimensions)
and nine (three dimensions), respectively. These equations can be derived more formally by
considering the dimensions of the augmented compatibility matrix as described by Guest &
Hutchinson [12].

A simple example system to illustrate the application of (2.1) is the kagome framework shown
in figure 2. With the given choice of smallest unit cell, j = 3 and b = 6, where two of the joints lie
on the unit cell boundary. The figure also shows what Owen & Power [13] call a ‘motif’, made up
of complete joints and bars, disjoint copies of which recover the full kagome lattice by translation.
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Except for systems which are locally isostatic [14], the result for m − s obtained from (2.1) will
depend on the size of the unit cell chosen. Choosing a unit cell that is larger than the minimum
unit cell effectively allows additional wavevectors to be considered, beyond a k = 0 wavevector
regime based on the minimum unit cell.

3. Counting with symmetry for periodic bar-and-joint structures
The symmetry group G that describes a periodic framework is a space group (or, in two dimensions,
a plane group). We consider the extension of the scalar approach of the previous section, where
the target now is the description of the symmetries of the deformations and forces. Use of
our previous assumption of replication of behaviour within the unit cell under translation
implies that we do not have to deal with the infinite group G, and instead we can restrict
consideration to the factor group P = G/T , where T is the group of translations in the appropriate
dimension. The factor group is isomorphic to a point group [15]. This fact allows us to capture
interesting additional information regarding symmetry with an extension of the approach used
for finite structures.

Scalar equation (2.1) for the net mobility m − s has terms relating to the freedom of the joints,
the constraints imposed by the bars, the deformation modes of the unit cell and rigid-body
translations. The symmetry-extended version of this equation is

(two or three dimensions) Γ (m) − Γ (s) = Γ (j) × ΓT − Γ (b) + Γdef − ΓT, (3.1)

where the new term Γdef collects the character of the infinitesimal deformations of the unit cell.
These deformations can be described by a symmetric second-order tensor, and hence span the
symmetry [Γ 2

T ], the symmetric part of the product ΓT × ΓT [16]. As the antisymmetric part of the
square is {Γ 2

T } = ΓR, we have

(two or three dimensions) Γdef = ΓT × ΓT − ΓR. (3.2)

Hence, the symmetry-extended Maxwell equation for periodic bar-and-joint frameworks is

(two or three dimensions) Γ (m) − Γ (s) = Γ (j) × ΓT − Γ (b) + ΓT × ΓT − ΓT − ΓR, (3.3)

with ΓT and ΓR defined for two dimensions and three dimensions as in (1.3), and all
representations calculated in the factor group P . This equation expresses our main result for
periodic bar-and-joint frameworks in two dimensions and three dimensions. It gives an explicit
expression for the numbers and symmetries of the mechanisms and states of self-stress in terms
of the numbers and symmetries of components of the framework.

Note that the role of the point group is somewhat different in the treatment of finite and
periodic frameworks. In the finite case, the point group is the symmetry group of the object under
consideration. In the periodic case, the point group arises only because it is isomorphic to the
factor group. A corresponding element may therefore have a different physical significance in
each group. For example, in two dimensions there may be multiple centres of rotation, and in
three dimensions it may be that not all rotation axes pass through a common point. ‘Reflection’
operations of the point group may correspond to glide reflections in the factor group, and
‘rotations’ to screw rotations in the factor group.

In our examples, we use Hermann–Mauguin notation for the space groups/plane groups, and
Schoenflies notation for the point group isomorphic to the factor group, which we often loosely
call just ‘the point group’.

In general, the result for Γ (m) − Γ (s) obtained from (3.3) will depend on the size and location
of the unit cell. Effectively, the choice of unit cell corresponds to a decision to work within a
particular finite subgroup of the original infinite space group. We cannot tell in advance which
choice of unit cell might lead to interesting behaviour; what we are doing here is to give the
machinery for making the calculation once the unit cell is chosen. The system shown later in
figure 6 (analysed in §6) is an example where the correct choice of unit cell is important for the
detection of a mechanism.
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4. Examples for bar-and-joint frameworks

(a) A two-dimensional bar-and-joint framework: the kagome framework
The plane group of the kagome framework is p6m, and the point group isomorphic to the factor
group is C6v [15]. Simple counting gives 2j − b + 1 = 1, indicating that the framework is locally
isostatic [14], having at least one mechanism that repeats identically in every unit cell. Application
of (3.3) in a tabular form showing the character under each symmetry operation, and using the
Mulliken notation [17] for each representation, gives

C6v E 2C6 2C3 C2 3σv 3σd

Γ (j) 3 0 0 3 1 1 A1 + E2
×ΓT 2 1 −1 −2 0 0 E1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 6 0 0 −6 0 0 B1 + B2 + 2E1
−Γ (b) −6 0 0 0 −2 0 −A1 − B1 − E1 − E2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 0 0 0 −6 −2 0 −A1 + B2 + E1 − E2
+Γ 2

T 4 1 1 4 0 0 A1 + A2 + E2
−ΓT −2 −1 1 2 0 0 −E1
−ΓR −1 −1 −1 −1 1 1 −A2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ (m) − Γ (s) 1 −1 1 −1 −1 1 B2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This tabulation and those in the examples that follow set out the calculation in a standard
form that was devised for [3] and used in subsequent papers. The general arrangement is similar
to that used in chemical applications of point group theory, such as the calculation of symmetry
properties of molecular vibrations [16,18]. Some brief remarks about the notation may be useful.
The first line gives the point group (denoted by the Schoenflies symbol) and lists by classes the
different symmetry operations that constitute the group. In general, operations S have symbols
drawn from the set of: E for the identity, Cn for a proper rotation by 2π/n (subscripted with
prime(s) to avoid ambiguity when a C2 rotation is performed about an axis at right angles to the
axis of the highest order), i for the inversion, Sn for an improper rotation (a rotation through 2π/n
followed by a reflection in the plane perpendicular to the axis) and σ for reflection in a mirror
plane (with a descriptive label such as v, h, d to distinguish vertical, horizontal, dihedral planes).
Settings of the point groups and the definitions of the various distinguishing labels are given in
[16,18,19]. The final column of the table shows the reduction of the row of traces χ (S) to a direct
sum of irreducible representations of the point group. The notation for these follows Mulliken, as
noted earlier: representations are labelled A (non-degenerate, symmetric under Cn rotation about
the principal axis), B (non-degenerate, antisymmetric under Cn rotation about the principal axis),
E (doubly degenerate) or T (triply degenerate) and distinguished by subscripts and superscripts
as necessary, such as g/u subscripts for symmetry/antisymmetry under inversion, single and
double prime superscripts for symmetry under horizontal planes and so on. These standard
labellings are to be found in compilations of character tables for chemistry [16,19].

Returning to the specific example of the kagome framework, the calculation shown in the
table above has identified the symmetry of the mechanism predicted by the scalar count. This
mechanism has B2 symmetry. Note that the one-dimensional B2 representation: (i) is present
in only one copy in Γ (j) × ΓT, (ii) is not present in Γ (b), and (iii) is not present in Γ 2

T − ΓR.
Observations (i) and (ii) imply that the mechanism is uniquely defined by the symmetry, and, by
(iii), does not require any deformation of the unit cell. The motion associated with the mechanism
consists of alternating rotations of triangular units; the sense of rotation of any triangle is opposite
to that of its three neighbours, as shown in figure 2d.

This example has illustrated the way that counting with symmetry can, in favourable cases,
give not only the symmetry but also an explicit definition of the mechanism. In the particular case
of the kagome lattice, the symmetry-detectable mechanism is known from numerical calculations
to be unique under the constraint that the contents of all unit cells are defined by translation.
Thus, the symmetry-extended Maxwell rule (5.5) gives a complete solution in this case.
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(a) (b)

Figure 3. The ‘sodalite’ framework. (a) The fully expandedmaximum symmetry framework appropriate to the synthetic soda-1
structure. The unit cell used in themobility calculation is indicated by thin lines, and for clarity the tetrahedra are shown as solid
bodies. (b) A deformed configuration of the framework which corresponds to the pure A2u rotational collapsemode, and closely
models the experimental structure of mineral sodalite [20]. A rotation of 23◦ was applied to all tetrahedra in (a) to yield (b).
This value is near to the average of the angles reported in [22] for SiO4 and AlO4 tetrahedra in the mineral; it leads to shrinkage
of the side length of the unit cell by a factor of 0.92. (Online version in colour.)

(b) A three-dimensional bar-and-joint framework: the ‘sodalite’ framework
Sodalite is a dark blue mineral of formula Na8Cl2Al6Si6O24 [20] of space group P4̄3n and point
group Td. The crystal structure is built from SiO4 and AlO4 tetrahedra, linked by corner-sharing of
oxygen atoms. The experimentally observed structure can be considered to result from distortion
of a predecessor of higher symmetry by a process that was termed ‘rotational collapse’ by Pauling
in his early studies of the X-ray diffraction pattern of this compound [21]. Concerted rotation of
the tetrahedra is accompanied by small distortions in edge lengths and variations in rotational
angle between chemically different tetrahedra [22].

For the present application, we consider an idealized framework based on sodalite, in which
the MO4 units are modelled as regular tetrahedra [23,24]. In our bar-and-joint model, a bar is
placed along each tetrahedron edge, and a spherical joint is placed at each tetrahedron vertex
(oxygen position). Six bars meet at each joint, three from each of two neighbouring tetrahedra. We
take all bars to have the same length, thereby removing the distinction between SiO4 and AlO4,
which raises the symmetry to I4̄3m [25], which also has point group Td. We now consider the fully
expanded structure, which further raises the space group symmetry to the topological symmetry
of the framework, i.e. Im3̄m, with point group Oh. With these restrictions, the framework is a
model for the unsubstituted silica sodalite Si12O24, which does not occur naturally, but has been
made by template synthesis [26,27]. This is the ‘soda-1’ structure studied in [20]. The relationship
between various sodalite-like frameworks has been described in [28]. The point group of our
idealized structure (shown in figure 3) is Oh. The unit cell contains 24 joints and 72 bars, and
scalar counting using (2.1) gives m − s = 3. Application of (3.3) in tabular form is given in table 1.

From the form of the reducible representation Γ (m) − Γ (s) in the final row of the table, we
can deduce that there are at least seven mechanisms that repeat identically in every unit cell
and that these span A2u + T1g + 2T2g. Symmetry has clearly already revealed more mechanisms
than the scalar count; it also gives an important clue to the deformation modes of this crystal
framework. The non-degenerate A2u mechanism breaks the inversion symmetry, and if we follow
this distortion mode we arrive at the space group I4̄3m with point group Td. In the lower group,
Γ (m) − Γ (s) = A1 + 2T2 − 2A2 − E; hence, in the absence of totally symmetric states of self-stress,
undetected in the higher symmetry group, the mechanism is finite [29] and becomes totally
symmetric in the lower group. The mechanism consists of concerted rotations of tetrahedra and
follows the ‘rotational collapse’ mode described by Pauling [21], and this distortion of the model
pin-jointed framework takes it close to the experimental structure of mineral sodalite. Although
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the mechanism follows a continuous geometrical path, in practice it will ultimately be blocked by
steric constraints of the kind invoked in more detailed descriptions of the crystal structure [20].

5. Periodic mobility counting for body-and-joint models
In the analysis of finite structures, it is sometimes convenient to consider assemblies of bodies
connected by joints rather than assemblies of joints connected by rigid bars. In the body-and-joint
model, the rigid bodies are typically polygonal or polyhedral and the joints may be of general
type. This approach is also useful in the world of repetitive structures. Solid-state materials are
often modelled in terms of rigid tetrahedral and octahedral units [30]. In the present section, we
derive symmetry-extended counting rules for the mobility of periodic structures treated in this
alternative body-and-joint model.

Scalar counting of the relative degrees of freedom, or mobility, of a mechanical linkage
consisting of n bodies connected by g joints, where joint i permits fi relative freedoms is [5,6]

(two dimensions) m − s = 3(n − 1) − 3g +
g∑

i=1

fi

and (three dimensions) m − s = 6(n − 1) − 6g +
g∑

i=1

fi.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.1)

The terms on the RHS account, respectively, for the overall freedoms of all n bodies minus the
rigid-body motions of the assembly, the constraints imposed by rigidly glued joints, and the
restoration of the actual freedoms of the joints.

Conversion of (5.1) to allow for periodicity is straightforward. First, the rigid-body motions
are restored, then the freedoms associated with the deformations of the unit cell are added, and
finally the appropriate rigid-body displacements are removed. The net effect is to add four to the
RHS of the two-dimensional equation or nine to the RHS of the three-dimensional equation, as
for the pin-jointed case (2.1), leaving, for periodic systems,

(two dimensions) m − s = 3n − 3g +
g∑

i=1

fi + 1

and (three dimensions) m − s = 6n − 6g +
g∑

i=1

fi + 3.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.2)

For two-dimensional periodic linkages where all joints are pin joints, we have fi = 1 for all i, and
for three-dimensional periodic linkages where all joints are spherical joints we have fi = 3 for all
i, and hence (5.2) becomes

(two dimensions) m − s = 3n − 2g + 1

and (three dimensions) m − s = 6n − 3g + 3.

}
(5.3)

In the symmetry extension of the mobility criterion for finite frameworks, it is useful to
consider the ‘contact polyhedron’ C, which has vertices that represent the rigid elements of
the structure and has edges that represent the joints. The expression is derived from a thought
experiment where the structure is first considered to be a rigid assembly with all joints glued, and
the joint freedoms are then restored. The result is, from [6],

(two or three dimensions) Γ (m) − Γ (s) = (Γ (v, C) − Γ‖(e, C) − Γ0) × (ΓT + ΓR) + Γfreedoms,
(5.4)

where now Γ (v, C) is the permutation representation of the vertices of C, Γ‖(e, C) is
the representation of the set of vectors directed along the edges of C, and Γfreedoms is the
representation of the freedoms of the joints. The detailed structure of Γfreedoms depends
on the types and distributions of the joints. Conversion of (5.4) for periodic structures
follows the same route as the extension of (1.2) to (3.3), i.e. addition of the same fourfold
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(two-dimensional)/ninefold (three-dimensional) reducible representations ΓT × ΓT to the RHS,
leaving, for periodic systems,

(two or three dimensions) Γ (m) − Γ (s) = (Γ (v, C) − Γ‖(e, C) − Γ0) × (ΓT + ΓR)

+ Γfreedoms + ΓT × ΓT (5.5)

with ΓT as given in (1.3). The contact ‘polyhedron’ is now infinite but we consider its restriction
to the unit cell or, more formally, its quotient with respect to translations.

Specialization to the case of all pin joints (two dimensions) or all spherical joints (three
dimensions) relies on [6]

(two or three dimensions) Γfreedoms = Γ‖(e, C) × ΓR (5.6)

and hence the explicit formula for periodic structures of this simplified type is

(two or three dimensions) Γ (m) − Γ (s) = Γ (v, C) × (ΓT + ΓR) − Γ‖(e, C)

× ΓT + ΓT × ΓT − ΓT − ΓR, (5.7)

where the three terms on the RHS encapsulate the freedoms, constraints and periodicity effects
that contribute to the net mobility of the structure.

6. Examples for body-and-joint structures
The kagome and sodalite calculations of §4 can be reworked in terms of rigid triangular plates and
rigid tetrahedral bodies. The results for Γ (m) − Γ (s) from (5.7) for any particular system will be
identical to those from the bar-and-joint analysis using (3.3). This correspondence is guaranteed
by the presence of rigid simplices of bars within the bar-and-joint version of the framework.

(a) Infinite frameworks of pin-jointed rectangles
Body-and-joint mobility criterion (5.7) is ideally suited to analysis of the hinged polygon
constructions that are common in the literature of auxetic materials [31,32]. One system that has
been studied in detail in connection with the explanation of auxetic behaviour in two dimensions
is built on the square lattice. Symmetry calculations on three variants of this basic system are
treated here.

The first model [32] consists of a lattice of rectangles of two sizes, pinned together at their
corners. In the highest-symmetry realization, this structure belongs to the plane group p2mm with
point group C2v . The calculation using (5.7) with the unit cell shown in figure 4 is

C2v E C2 2σx 2σy

Γ (v, C) 2 2 2 2 2A1
×(ΓT + ΓR) 3 −1 −1 −1 A2 + B1 + B2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 6 −2 −2 −2 2A2 + 2B1 + 2B2
−Γ‖(e, C) −4 0 0 0 −A1 − B1 − E1 − B1
×ΓT 2 −2 0 0 B1 + B2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −8 0 0 0 −2A1 − 2A2 − 2B1 − 2B2
Γ 2

T − ΓR 1 5 1 1 2A1 + A1 − B1 − B2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ (m) − Γ (s) −1 3 −1 −1 A2 − B1 − B2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scalar counting (5.3) gives m − s = −1, showing only that the system is overconstrained. The
symmetry calculation reveals that the net count of −1 conceals one mechanism and two states of
self-stress. Further, the A2 mechanism is finite in the absence of an equisymmetric state of self-
stress, as a necessary consequence of the Abelian nature of C2v . As Grima et al. [32] comment, this
mechanism is auxetic.

In the case where the rectangles degenerate to squares of two different sizes, we recover the
system considered by Grima & Evans [31]. The plane group is now p4mm and the point group is
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x

y

(a)

(b)

(c)

Figure 4. Model for an auxeticmaterial based on rectangles of two sizes, showing (a) themodel and the choice of unit cell with
rigid plates indicated by shading; (b) the contact polyhedron C for the unit cell; and (c) a deformed configuration, illustrating
the A2-symmetric mechanism.

C4v with mirror lines d running both vertically and horizontally in the (now square) unit cell, and
the mirror lines v running diagonally. In this case, construction of a bar-and-joint model consistent
with the symmetry would require each square to be braced across both diagonals, generating an
unwanted local state of self-stress. This is avoided for the body-and-hinge model, for which the
symmetry calculation gives

C4v E 2C4 C2 2σv 2σd

Γ (v, C) 2 2 2 2 2 2A1
×(ΓT + ΓR) 3 1 −1 −1 −1 A2 + E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 6 2 −2 −2 −2 2A1 + 2 + 2E
−Γ‖(e, C) −4 0 0 −2 0 −A1 − B1 − E
×ΓT 2 0 −2 0 0 E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −8 0 0 0 0 −A1 − A2 − B1 − B2 − 2E
Γ 2

T − ΓR 1 −1 5 1 1 A1 + B1 + B2 − E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ (m) − Γ (s) −1 1 3 −1 −1 A2 − E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(a)

(b)

Figure 5. Model for an auxetic material based on squares of equal size, showing (a) the model and the smallest choice of unit
cell with rigid plates indicated by shading and (b) the contact polyhedron C for the unit cell which in this case consists of a single
unique vertex.

Clearly, the scalar count (5.3) is unchanged by the symmetrization of the rectangles, and the
only change in Γ (m) − Γ (s) is the collapse of the B1 and B2 pair of states of self-stress to a
degenerate E pair. The physical conclusions about the continuous nature of the mechanism are
unchanged.

In the further limiting case when the two squares become equal in size, a smaller unit cell
becomes possible, as shown in figure 5. Straightforward application of (5.7) gives

C4v E 2C4 C2 2σv 2σd

Γ (v, C) 1 1 1 1 1 A1
×(ΓT + ΓR) 3 1 −1 −1 −1 A2 + E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= 3 1 −1 −1 −1 A1 + A2 + E
−Γ‖(e, C) −2 0 2 0 0 −E
×ΓT 2 0 −2 0 0 E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= −4 0 −4 0 0 −A1 − A2 − B1 − B2
Γ 2

T − ΓR 1 −1 5 1 1 A1 + B1 + B2 − E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ (m) − Γ (s) 0 0 0 0 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thus, in this case, neither the scalar count nor the symmetry count gives any indication of the
mobility that we know to be present from the previous calculation. The physical explanation of
this apparent paradox is clear; by assumption of the smaller unit cell, we have constrained every
square to behave in the same way and this is inconsistent with the counter-rotating nature of
the mechanism.

This example illustrates the potential pitfalls of fixing a unit cell in advance. Mechanisms
will be discovered by this method only if they break symmetry and are consistent with a fixed
unit cell. Figure 6 shows twelve different unit cells, each of which may give different results for
Γ (m) − Γ (s), reflecting the different states of self-stress and mechanisms that are consistent with
the subgroup of the space group that is implied by the choice of unit cell.
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Figure 6. Twelve different choices of unit cell for an auxetic material based on squares of equal size. The unit cells marked with
dotted (rather than dashed) lines are inconsistent with themechanism in which alternate squares rotate in opposite directions.
The two unit cells marked in bold are analysed by tabular calculation in the text.

7. A symmetry-extended notion of local isostaticity
An isostatic framework is one that has neither mechanisms nor states of self-stress. A necessary
scalar condition for isostaticity is m − s = 0, which is the character under the identity of the
stronger condition Γ (m) − Γ (s) = 0 which demands cancellation under all symmetry operations
[33]. For periodic systems this condition is impossible to attain [12], but Kapko et al. [14]
introduced the concept of ‘locally isostatic’ to denote situations where, on average, the number
of constraints balance out the number of freedoms. Hence, for a locally isostatic two-dimensional
periodic framework, b − 2j and m − s = 1 by (2.1). The equality b = 2j (equivalently, b = 3j in three
dimensions) is again effectively the character under the identity of a symmetry relationship,

Γ (b) = Γ (j) × ΓT. (7.1)

Suppose that we insist that (7.1) holds, i.e. that χb(S) = χj(S)χT(S) for all S. Then, by (3.3),

Γ (m) − Γ (s) = ΓT × ΓT − ΓT − ΓR, (7.2)

which is a stronger symmetry condition for an extended notion of local isostaticity. In two
dimensions, (7.2) leads to some interesting conclusions about the possible placement of structural
components of the periodic framework. The conditions for the vanishing of the character of
Γ (m) − Γ (s) for the different allowed operations R are, in two dimensions:

χ (E) : 2j = b,

χ (C2) : −2j2 = b2,

χ (C3) : −j3 = b3,

χ (C4) : 0j4 = b4,

χ (C6) : j6 = b6

and χ (σ ) : 0jσ = bσ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.3)
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where bN and jN are, respectively, the number of bars and joints lying on a CN axis, and bσ and jσ
are, respectively, the number of bars and joints preserved by a σ mirror. As each of these counts
is non-negative, we can deduce that j2 = j3 = 0, b2 = b3 = b4 = bσ = 0. Further, as no bar can be
preserved by a CN operation with N > 2, b6 = 0 and hence j6 = 0. In addition, as any joint on a C4
axis must also lie on a C2 axis, j2 ≥ j4 and as j2 = 0, j4 must also be 0. The value of jσ is unrestricted.
Hence, a two-dimensional locally isostatic periodic framework with j joints and 2j bars has joints
only in general position, in mirror lines, or in both, and has bars in general position only. If all
joints are also in general position, we have

Γj = j
|G|Γreg; Γb = 2j

|G|Γreg, (7.4)

where |G| is the order of the point group, and Γreg is the regular representation, with χreg(E) = |G|,
and χreg(R) = 0 for R �= E; trivially, Γj × ΓT − Γ (b) = 0 in this case.

There is a distinction between scalar and symmetry-extended notions of local isostaticity.
The latter is more restrictive, and may depend on the choice of unit cell. For instance, the
kagome lattice is 4-regular, and hence has m − s = 1. However, the symmetry calculation with
the minimum unit cell used in §4a gives

Γ (j) × ΓT − Γ (b) = (B1 + B2 + 2E1) − (A1 + B1 + E1 + E2)

= −A1 + B2 + E1 − E2 (7.5)

in the C6v point group. The operations for which the framework departs from the local isostatic
count are S = C2, where j2 = 3, and the mirror σ , where bσ = 1. Once the system has distorted
along the B2 mode, the plane group is reduced to p31m with point group C3v and the RHS of (7.5)
vanishes. Only then has the system attained locally isostatic status on both scalar and symmetry-
extended criteria. Considered in terms of characters in the distorted configuration, as the mirror
lines run parallel with the bars, but pass through joints and hexagon centres, bσ = 0 and jσ = 2. In
addition, the C3 axes lie at the centres of triangles and hexagons, and hence j3 = b3 = 0, consistent
with (7.3). Indeed, in this case, for any unit cell consisting of n × n copies of the one shown
in figure 2d, the counts will become bσ = 0, j3 = b3 = 0, with jσ = 2n, showing that the distorted
kagome lattice with space group p31m is locally isostatic for any choice of unit cell.
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